AD-A256 193
MRV

ELECTE %m
0CT8 1992 ]
Compiling Prolog to Standard ML: i
Some Optimizations c
Luke Hornof
September 9, 1992
CMU-CS-92-166

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

Using a high level language to develop a Prolog system offers many advantages. Development
time is decreased, maintainability is increased, and modularity can be utilized. We used Standard
ML to develop such a system due to its many powerful features, such as its efficient garbage
collection and strong type checking. Of particular consideration was to determine the practicality
of this high level system—whether or not a reasonable performance could be obtained. This
paper focuses on the optimizations implemented which increase the performance of the system.
They include Indexing, Last Call Optimization, Garbage Reduction, and String Compare. All of
the combined greatly enhance the performance of the system, which approaches that of a low-
level implementation for certain types of programs.
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1. Introduction

Prolog is a language for programming in logic. Logic programming offers an alternative to conven-
tional programming. Instead of the usual von Neumann based model, it is derived from an abstract
model. A logic program expresses knowledge about a problem with a set of logical axioms. This
program can then be executed by providing it with a logical statement to be proved—the goal. The
execution solves the problem by proving or disproving the goal statement, given the assumptions
the logic program contains[10].

Therefore it should not be surprising that compiling Prolog programs into efficient object code
is quite different from compiling languages like C or Pascal. In 1983, David H. D. Warren designed
an abstract machine, called the Warren Abstract Machine (WAM), to be used as an efficient target
for Prolog compilers [11]. The clearest description of the WAM is given by Ait-Kaci [1]. The
reader may find Ajt-Kaci’s tutorial and an additional paper [6] as useful background material to
help understand this paper.

The WAM has become the standard model for compiling Prolog, and logic programming lan-
guages in general. It can be divided into two parts—the instruction set and the memory architec-
ture. The instruction set provides operations for building and destructuring Prolog data structures,
allocating and binding variables, unification, backtracking, and search control. The memory ar-
chitecture consists of registers, a heap, a trail stack, and an environment stack. It is designed to
be implemented in a low-level language such as C, or directly simulated in machine code. Both of
these approaches produce the high performance necessary for a Prolog system to be usable.

Nevertheless, using low-level languages has its disadvantages. First of all, certain features of
the WAM are difficult to implement. For example, it is hard to keep track of environments when
implementing backtracking, and allocating complex data structures on the heap can become quite
tricky and detailed. Second, lack of modularity and type safety increases development time. Also,
Prolog programs generate garbage on the heap, so a garbage collector must be written. But perhaps
the biggest disadvantage is that logic programming languages are still evolving and chinging, and
making frequent modifications to experimental low-level systems is hard.

Programming in a modern high-level language to a large extent avoids these problems, although
a high-level implementation of the WAM might be too slow for practical use.

The goal of our research is to find out whether it is possible to implement a Prolog system in
the high-level language Standard ML [8] with comparable performance to the lower-level language
implementations. We chose Standard ML because recent progress in its compilation led us to
believe that it might be competitive with lower-level languages for a Prolog system. We expected
this approach to offer the software engineering advantages mentioned above, such as shortened
development time, ease of maintainability, and modularity, as well as a few disadvantages, such as
a slight deviation from the WAM.

Another question which we kept in mind was whether there were any SML features, such as its
strong type checking or its functional nature, which would make it difficult or even impossible to im-
plement some of the more complicated Prolog features, such as assert/retract or meta-programming.

The first step in writing this system involved working out a specific description of the how we
would model the WAM in SML. By taking our time and paying close attention to details, our
original design proved to be effective. By following it, we fairly easily implemented Core Prolog
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with no major problems. After that, we added cuts, arithmetic, control functions, file I/O, and
meta-programming. The optimizations which were also added include indexing, last call, string
compare, and garbage reduction. All of these were added without altering our original design much,
although meta-programming and string compare both required some minor changes.

Section 2 describes the design we followed when developing our system. Our first goal was
concerned with determining whether our method of compiling Prolog to SML was possible. There-
fore we were more interested in obtaining a working version, rather than a highly optimized one.
Section 3 then explains in detail the elements of which this original system is composed. Sections
3.1-3.3 introduce the basics: terms, queries, and programs. Then in Sections 3.4-3.6 we add argu-
ment registers, flat resolution, and the final additions needed to complete Core Prolog. We were
quite pleased with this original system and wanted to continue further development. We divided
the project into two independent parts. Barbara Moura worked on extending the core system.
Her results can be found in a paper she is currently writing [9]. I concentrated on implementing
optimizations which would increase the overall performance. These optimizations are explained in
Section 4, and include Indexing, Last Call Optimization, Garbage Reduction, and String Compare.
In Section 5 we present our results and analyze them. Finally, Section 6 contains the conclusion to
the performance aspect of our project.

2. Compiling Prolog into Standard ML

We chose SML for many reasons. This section will explain our approach to writing the system in
SML. Its polymorphic type system provides complete type safety in a way which is convenient for
programmers. Also, higher order functions allow control flow to proceed via success continuations.
Further, the language supports a module system which provides type-safe separate compilation
and parameterized modules. In addition, the code compiled by the Standard ML of New Jersey
compiler (2] is highly efficient, particularly in garbage collection and continuation-passing. We
wanted our Prolog system to benefit from all of the advantages of using this kigh-level language.

As we will see in Section 3, we utilize SML’s efficient features in our system in the following
way. We use SML datatypes to represent the WAM’s terms, which can then be stored easily on
SML’s heap. References are used to implement substitution during unification. Although SML
is a mostly functional programming language, it still allows side-effects, such as the ones created
by these references. Also, SML functions are defined to correspond directly to WAM instructions.
These functions are then compiled, which makes their execution more efficient than interpreting
WAM instructions as is commonly done. This also makes reading the ML code produced by our
compiler very much like reading the WAM object code produced by a conventional Prolog compiler.
These functions can be passed as success continuations and used to implement backtracking. This
makes it particularly simple to keep track of environments, unlike in a low-level implementation.
And finally, we made use of the ML modules so that we could develop separate components of the
Prolog compiler and the WAM, and then easily combine them.

We also take advantage of several of SML’s built in features. These tools are needed in the Prolog
system. Since we do not have to develop them ourselves, we further decrease our development
time. For example, we do not have to write our own parser for the compiler—we can simply use
MLyacc and MLlex to automatically generate it for us. And instead of taking care of memory
management ourselves, we have the SML/NJ implementation’s highly efficient garbage collection
system. Utilizing these efficient and powerful tools eliminates the need for 1 wur -
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Figure 1: This figure shows the structure of our system. Note that the objects inside square are
written in SML.

The structure of our system is a bit complicated. The code for the runtime system, our version
of the WAM written in SML, is included and explained in this paper. Also included are many
examples of the SML WAM code which is produced by our compiler. Determining the practicality
of using SML for this WAM code is an important aspect of our research. The runtime system is
defined once, before compilation, and never changes. The SML WAM code is generated at runtime,
and can be thought of as input to the WAM. The actual “Prolog to SML” compiler is also written
in SML. This paper does not address this compiler, but understanding its place in the system is
helpful since we will be making references to it.

o
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A diagram illustrating the relationships between these different components can be seen in
Figure 1. From this picture we can see how Prolog programs and queries entered by the user are
compiled into their respective SML WAM codes. This two codes, written in SML, are the input to
the WAM, which is also written in SML. The WAM then executes program and query WAM code
and returns the appropriate results to the user.

3. A small subset of Prolog (Lo)

We closely followed Ait-Kaci’s tutorial of the WAM [1] when developing our system. In a fashion
similar to his, we will first describe a small subset of Prolog and then add to it in subsequent
sections. The initial subset described in this subsection includes terms, queries, and programs, and
is referred to as Lo by Ait-Kaci in his tutorial.

A Prolog program establishes relationships between logical objects. Once that is done, the
program is presented with a goal to prove in the form of a query. If the query does not unify
with the program, then the goal fails, and the user is notified of this. If they do unify, success is
indicated by returning the bindings of query variables unified in the process.

In this first language, Lg, failure during unification raises an ML exception, which is handled
by printing out the string “no”. Otherwise the query and the program unify, and the list of bound
query variables is printed out.




3.1, Term Representation

There are two types of terms, structures and variables. A structure is of the form f(¢y,...,ts)
where f is the structure’s name, n is the number of subterms the structure contains (known as its
arity), and the ¢;’s are the subterms. Structures are distinguished by their unique functor, which
is the concatenation of the name and arity of the form f/n. By convention, functor names begin
with a lower case letter. Structures whose arity is zero have no subterms, and are referred to as
constants.

A variable is initially unbound when it is created. During the execution of a Prolog program it
may be bound to another term, either structure or variable. The convention for variables is that
they begin with an upper case letter. The information needed to store structure and variable terms
in SML is represented by the following datatype definition (comments are enclosed by (& #*)).

datatype term = (* terms *)
STR of string * int * term list (* structure *)
| REF of termref ref (* variable *)
and termref = (* term reference *)
UNBOUND (* unbound variable *)
| BOUND of term (* bound variable *)

This datatype defines a term to be either a structure (STR) or a variable (REF). The structure
term consists of a string for the name, an integer for the arity, and a list of subterms for its
arguments. The variable term is an SML reference, which allows variables to be bound. This
reference, called termref, is either UNBOUND or BOUND to another term.

With this definition, we can see how a Prolog term is represented in SML. A simple term such
as foo(h(X),W, g(W, X)) would become this SML structure:

STR ("foo",3,[STR ("h",1,[REF (ref UNBOUND)]),
REF (ref UNBOUND),
STR ("g",2,[REF (ref UNBOUND) ,REF (ref UNBOUND)1)1).

The structure terms, such as foo, h, and g, are created with their name, arity, and list
of subterms. The variables terms, in this case X and W, are initialized with unbound val-
ues, REF (ref UNBOUND). It is important to realize, though, that the X’s and W’s in the term
foo(h(X),W,g(W, X)) are shared, even though this is not apparent in the printed representation.
To see this, we could print out the term unambiguously, as follows:

X3 = REF (ref UNBOUND) (x X %)

X4 = REF (ref UNBOUND) (* W »)

STR ("foo",3,[STR ("n",1,[X3]), (* foo(h(X), *)
X4, (* W, *)
STR ("g",2,[X4,X31)1) (* g(W,X). *)

Though X2 and X4 have the same initial values, this representation shows that they both occur
twice in the term. A change made to either variable will cause a change to both of its occurrences
in the term.




3.2. Query Representation

A query is represented by an SML function named query which builds a structure term (and its
subterms) from the given information and puts it into a variable named xi. It then runs the
program, by executing another SML function named p, on this newly built x1 term. The execution
of this program will then decide the the results of the query.

In order to transform the Prolog query into this SML function, we have implemented two simple
WAM instructions which help build the query term. They are put_structure and put_variable.
The former instruction creates SML structures when they are encountered in the query, and the
latter is used to create variables. Their definitions are as follews:

fun put_structure (f, arity) vars = STR (f, arity, vars)

fun set_variable () = REF (ref UNBOUND)

The first instruction, put_structure, creates a STR structure by taking the structure’s functor
and its list of subterms, and returning them in the form defined by the structure term datatype. The
other instruction, set_variable, returns REF (ref UNBOUND), the value with which new variables
are initialized to when they are first encountered.

The query compiler produces a function named query which consists of a sequence of these
instructions. When executed, the appropriate term structure is created and stored in x1 on the
heap, and the program is called. The SML code which follows is what the compiler produces for
the query foo(h(X),W,g(W,X)). The term which is produced and stored in x1 by the execution
of this code is the foo structure term previously described.

(* foo(h(X),W,g(W,X)) *)

fun query () =
let
val x3 = set_variable ()
val x2 = put_structure ("h", 1) [x3]

val x4 = set_variable ()

val x5 = put_structure (“g", 2) [x4, x3]

val x1 = put_structure ("foo", 3) [x2, x4, x5]
in

p(x1)
end

3.3. Program Representation

A program is represented by an SML function named p which performs operations on a query
term already built and stored on the heap. This program is what determines whether the query
fails or succeeds. There are three operations which the SML program function can perform on the
query term. The first is get_structure, which is used each time a structure is encountered in the
program. The next is unify_variable, called the first time a variable occurs. The last function,
unify_value, is used for any repeated occurrence of a variable. These functions are defined below.

-
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datatype mode = READ | WRITE

fun get_structure (f1, arityi, Xi) =
let val addr = deref(Xi)
in
case (addr) of
(REF (r as ref UNBOUND)) =>
let fun for(0) = nil
| for(n) = (REF (ref UNBOUND))::(for (n-1))
val 1stl = for (arityl)
in
(r := BOUND (STR (f1, arityl, 1lstl));
(1st1, WRITE))
end
| (STR (£2, arity2, 1st2)) =>
if (f1 = £2) andalso (arityl = arity2) then
(1st2, READ)
else
_ raise DoesNotUnify "get_structure: STR"
I (L) => raise DoesNotUnify "get_structure: else"
end

fun unify_variable 1lst = lst

fun unify_value (Xi, s::S, mode) =
((case (mode) of
READ => unify(Xi, s)
| WRITE => bind(s, Xi));
S)
| unify_value (_, nil, _) = raise InternalError "unify value"

The first instruction, get _structure, takes three arguments. They are a structure’s name, fI,
its arity, arityl, and an argument register, X;. The purpose of this instruction is to determine if
the structure defined by f7 and arity! unifies with the contents of the argument register passed in.
To do so, it first dereferences (explained in detail at the end of this section) the argument register
and does one of two things. If the dereferenced X; is an unbound variable, unification succeeds
by simply binding this variable to a structure term with the structure’s name, arity, and a list of
unbound variable subterms. This list of subterms and the mode WRITE are returned, which will be
used by subsequent instructions to continue processing the program. WRITE mode indicates that
the subterms in the list are unbound.

On the other hand, if the dereferenced X, is a second structure, f2, arity2, and Ist2, then the two
structure’s functors are compared for equality. If either the names or the arities differ, unification
fails and the exception DoesNotUnify is raised. Otherwise, the second structure’s list of subterms,
Ist2, is returned with a mode of READ. This mode is chosen since Ist2’s variables may already be
bound.

The last two instructions are much shorter and simpler. The first time a register argument is
seen, unify_variable is called. This function merely returns the list of terms passed in. The way
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in which this is used is to allow the SML WAM code to remove the head of the list and set a
variable to its value. We will see how this happens when we look at our examples.

Repeated occurrences of a variable use the instruction unify_value. It takes an argument
register (X;), the list of subterms (where s is the head of the list and S'is the tail), and the mode.
This function uses the mode to decide what to do. If get_structure set a mode of WRITE, then s
is known to be unbound and unify_value simply binds s to X;. If READ mode was set, then s may
already be bound, in which case full unification must be performed. In either case, the tail of the
list of subterms is returned.

Using these three functions, a program term is compiled into the SML function p which takes
the query term as input and returns it after performing its specific sequence of operations to it. A
program, such as foo(Z,h(Y),g(Z,h(a))), would be compiled into the following SML function.

(* £00(Z,h(Y),g(Z,h(a))) *)

fun p x1 =

let
val (S, mode) = get_structure ("foo", 3, x1) (* x1 = foo %)
val (x2::S) = unify_variable S (* Z *)
val (x3::S) = unify_variable S (* x3 %)
val (x4::S) = unify_variable S (* x4 *)
val (S, mode) = get_structure ("h", 1, x3) (* x3 = h %)
val (x5::S) = unify_variable S (Y %)
val (S, mode) = get_structure ("g", 2, x4) (* x4 = g %)
val S = unify_value (x2, S, mode) (* Z )
val (x6::S) = unify_variable S (* x6 *)
val (S, mode) = get_structure ("h", 1, x6) (* x6 = h *)
val (x7::S) = unify_variable S (* x7 *)
val (S, mode) = get_structure ("a", 0, x7) (* x7 = a %)

in
xi

end

Looking at this example, we see how these runtime functions are used to create an SML func-
tion which represents the Prolog program. Each structure has its corresponding get_structure
instruction, which returns a list of its subterms and a mode. Each of these instructions is then
followed by unify instructions, one for each subterm in the list. It can be seen here how the list
passed to unify variable is returned and split into two parts. A variable is set to the head, and
a new Sis set to the tail. Since the unify value instruction removes the head of the list itself, it
also sets S to the tail of the subterm list.

Another example which may be easier to follow involves relationships between relatives. We will
start out with a simple program, parent(margaret, tommy), which will be added to in subsequent
sections. This program consists of one literal, which is read, “margaret is the parent of tommy.”
Here is the SML function, p, generated to represent this program.

(* parent(margaret,tommy) *)
fun p x1 =
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let

val (S, mode) = get_structure ("parent", 2, x1) (* x1 = parent *)
val (x2::S) = unify_variable S (* x2 *)
val (x3::S) = unify_variable S (* x3 *)
val (S, mode) = get_structure ("margaret”, 0, x2) (* x2 = margaret *)
val (S, mode) = get_structure (“tommy", 0, x3) (* x3 = tommy *)
in
x1
end

Three three main WAM runtime functions use several utility functions. Variable binding is
done with bind, which takes an unbound term and another term, and binds the first to the second.
Dereferencing terms is done with deref, which calls itself recursively until either a structure or
an unbound variable term is found. The function samePointer determines whether two variable
terms refer to the same variable.

Unification. the main processing tool in logic programming, is done with a function.named
unify. It takes two terms and binds one to the other if either is an unbound variable. If they are
both structures, then it checks if their names and arities are equal. and then unifies corresponding
subterms. Unification fails if any part of this process fails. The SML code which defines these
utility functions is as follows.

fun bind (REF (r as ref UNBOUND), s8) = (r := BOUND s)
| bind (_) = raise InternalError "bind"

fun deref (a as (STR (_,_,.))) = a
| deref (a as (REF (ref UNBOUND))) = a
| deref (REF (ref (BOUND t))) = deref t

fun samePointer (REF ri, REF r2) = (r1 = r2)
| samePointer (_) = false

fun unify (a1, a2) =
let val di1 = deref atl
and d2 = deref a2

in
(* checks if pointers point to different locations in memory *)
if samePointer (d1, d2) then
O
else

case (d1, d2) of
(REF (r as (ref UNBOUND)), d2) => (r := BOUND d2;
O))]
| (d1, REF (r as (ref UNBOUND))) => (r := BOUND d1;
@)
| (STR (£f1, n1, x1), STR (£f2, n2, x2)) =>
if (f1 = £2) andalso (nt = n2) then
let fun for(nil, nil) = ()

]




| for(hi::t1, h2::t2)
if (unify(hi, h2) =
for(ti, t2)
else
raise DoesNotUnify "Diff args"
| for (.) = raise InternalError "Unify"

()) then

in
for(x1l, x2)
end
else raise DoesNotUnify "Diff functor/arity"
| (_) => raise InternalError "STR"
end

3.4. Argument Registers (L;)

We will now make two changes and extend Lg to a second language referred to as L; by Ait-Kaci.
To understand these changes, it should be noted that a literalis a term whose functor is a predicate,
while terms are arguments to the predicate. Whereas Lg only allowed one literal to be defined per
program (by a function named p), L, will allow more than one. In order to do this, we name the
SML functions with the name and arity of the Prolog literal i{ represents.

The second change which L, makes is instead of building the whole query structure in x1,
each literal argument is built in a separate argument register. These argument registers are la-
beled a;,as,...,a,, where n is the arity of the literal. The argument registers for the query
foo(h(X), W, g(W, X)) would be created with the following values:

(* foo(h(X),W,g(W,X)) *)
al = STR ("h",1,[REF (ref UNBOUND)])
a3 = REF (ref UNBOUND)
a4 STR ("g",Z.EREF (ref UNBOUND),i=F (ref UNBOUND)])

The query function, still named query as in Ly, is slightly different due to these two changes.
The Ly code for the query foo(h(X), W, g(W, X)) is listed below.

(* foo(h(X),W,g(W,X)) *)
fun query () =
let
val x2 = set_variable ()
val al = put_structure ("h", 1) [x2]
val a3 = set_variable ()
val x5 = set_variable ()
val a4 = put_structure ("g", 2) [x5, x2]
in
(foo3(at, a3, a4);
Top.Term.STR ("foo", 3, [al, a3, a4]))

ond



The changes in this new code can easily be seen. First of all, there is no put_structure
instruction needed for the literal’s name, foo. Instead, the function foo3 is called with arguments
al, a3, and a4. After this call, the value is returned to the top level is the foo structure with the
new values of the argument registers, used to print out substitutions.

The program code for L, also looks slightly different. The SML functions generated now have the
names of the literals they represent, and the runtime instructions which perform the operations on
the argument registers have changed. The new code for the same program, foo( Z, h(Y), g(Z, h(a))),
is listed below.

(* £00(Z,h(Y),g(Z,h(a))) *)
fun foo3(al, a2, a3) =

let
val (S, mode) = get_structure ("h", 1, a2) (* a2 = h *)
val (x4::S) = unify_variable S (* Y %)
val (S, mode) = get_structure ("g", 2, a3) (* a3 = g *)
val S = unify_value (al, S, mode) (* 2 %)
val (x5::S) = unify_variable S (x x5 *)
val (S, mode) = get_structure ("h", 1, x5) (* x5 = h *)
val (x6::S) = unify_variable S (* x6 *)
val (S, mode) = get_structure ("a", 0, x6) (* x6 = a x)
in
O
end

The name of the function is now foo3, and takes it takes three arguments, a1, a2, and a3. There
is no get_structure for foo followed by unify variable instructions for each of the subterms.
The rest of the code is very similar to that of Lo, except x1 is no longer returned since the changes
made to the terms on the heap will be reflected in the changes made to the argument registers.

Since the main advantage L; has over Lo is allowing a program to have more than one literal, let
us extend our “relatives” example to see how this is done. In this new program, we add the literal
brother(bob, margaret) to parent(margaret,tommy). Each function now has a different name, and
each argument has the form a;. The resulting SML code which is now generated can be seen below.

(=
* parent(margzaret,tommy) .
* brother(boc,margaret).

*)
fun parent2(al, a2) =

let
val (S, mode) = get_structure ("margaret', 0, al) (* al = margavet *)
val (S, mode) = get_structure ("tommy", O, a2) (* a2 = tommy *)

in
O

end

and brother2(al, a2) =




let
val (S, mode)
val (S, mode)
in
0

end

L}

get_structure ("bob"”, 0, al) (* at
get_structure ("margaret", 0, a2) (* a2

bob *)
margaret *)

3.5. Flat Resolution (L;)

The next changes we will make will define a new language, L2, which will allow predicates to have
bodies. Specifically stated, each L, predicate consists of clauses of the form ag :- a4,...,an,, where
the a;’s are literals and n is the number of literals in the clause. If n = 0, then the clause is simply
a fact, like the predicates we defined in L,. But, if n > 0, then the clause is called a rule, with
ap referred to as the head, and the remaining sequence of a;’s called the body. These literals in the
body are called goals, and each goal in a rule must unify in order for the predicate to succeed.

This change does not effect the query terms. Therefore, the SML code for the query term
foo(h(X), W, g(W, X)) is still the same.

(* foo(h(X),W,g(W,X)) *)
fun query () =

let

val x2 = set_variable ()

val al = put_structure ("h", 1) [x2]

val a3 = set_variable ()

val x5 = set_variable ()

val a4 = put_structure ("g", 2) [x5, x2]
in

(foo3(al, a3, a4);

Top.Term.STR ("foo", 3, [al, a3, a4]))
end

Programs in L, not only represent facts, but now must also handle rules. Given a rule, a¢ :-
ai,...,an, we have to check if all subgoals ay,...,a, succeed. To do this, we still treat the head
as a fact, but the body is treated like a conjunction of queries. Therefore, when compiling a rule,
we first generate the code for the head and follow it with query code for the body. The following
code is what the compiler produces for the rule foo(Z,h(Y), g(Z, h(a})) - h(a), 9(X, Z).

(* Program code for foo(Z,h(Y),g(Z,h(é))) :- h(a), g(X,2) *)
fun foo(al, a2, a3) =

let
val (S, mode) = get_structure ("h", 1, a2) (* a2 = h *)
val (x4::S) = unify_variable S (*» Y )
val (S, mode) = get_structure ("g", 2, a3) (» a3 = g *)
val S = unify_value (al, S, mode) (* Z =)

val (x5::S) = unify_variable S (*x x5 x)
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val (S, mode) = get_structure ("h", 1, x5) (* x5 = h *)
val (x6::S) = unify_variable S (* x6 *)
val (S, mode) = get_structure ("a", 0, x6) (* x6 = a *)
val x7 = put_structure ("a", 0) []
val _ = h (x7)
val x8 = set_variable ()
val _ = g (x8, al)
in
0

end

Looking through this code, we can see occurrences of the usual program instructions used to
represent the head of the rule, get_structure, unify variable, and unify_value. In addition,
however, we now also have put_structure and set_variable instructions previously only seen in
queries. This “query code” appended onto the normal program code now checks if the goals unify
by making the appropriate predicate calls, and will determine if the entire rule succeeds.

Now let’s add a rule to our “relative” program. In addition to the two relationships we have
already established, let us add the rule uncle(X,Y) :- brother(X, Z),parent(Z,Y). 1t is read, “X
is the uncle of Y, if there exists some Z for which X is brother to Z and Z is the parent of Y.
A query wkhich makes an inquiry about this uncle relationship will now get treated as follows.
First, the query’s predicate must unify with uncle, and in addition two more queries must also be
satisfied, namely drother( X, Z) and parent(Z,Y). The SML code which represents this looks like
this:

(*
* parent(margaret,tommy).
* brother(bob,margaret).
*
* uncle(X,Y) :- brother(X,Z), parent(Z,Y).
*)
fun parent(al, a2) =
let
val (S, mode) = get_structure ("margaret", 0, al) (* al = margaret *)
val (S, mode) = get_structure ("tommy", 0, a2) (* a2 = tommy *)
in
O
end
and brother(al, a2) =
let
val (S, mode) = get_structure ("bob", 0, al) (* a1l = bob *)
val (S, mode) = get_structure (“margaret", 0, a2) (* a2 = margaret *)
in
O
end

and uncle(al, a2) = let
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val x3 = set_variable ()

val _ = brother (al, x3)

val _ = parent (x3, a2)
in

O

end

3.6. Prolog (L3)

The last addition we make completes what is known as Core Prolog, or Pure Prolog. It possesses
the minimum functionality required with which to begin writing interesting programs, although
most useful systems contain many additional features. The last change needed to compiete this
final language, L3, is the allowance of disjunctive definitions in programs.

A definition is an ordered set of clauses whose head literals have the same predicate name. A
definition with n clauses allows a predicate n different chances to unify. When presented with a
query, each of the predicate’s clauses wiil attempt unification in the order in which they are written.
Initially, the first clause in a definition is called. If it fails, then the next clause is called, and so
on. Failing unification no longer stops program execution, it instead tries the alternatives in order.
This process of considering alternative clauses upon failure is know as backtracking. A predicate
now fails only if each clause in its definition fails.

The way we implement this type of control flow in SML involves keeping track of what the
next step in the program will be if a function succeeds. We pass the “next step” from function to
function in the form of a success continuation[3, 6]. Each runtime function now takes a continuation,
which is called upon successful unification. The query initially calls the program with a predefined
continuation which prints out variable substitutions. This top level continuation is the last function
a program will call, only if it has successfully unified all of its parts.

If unification fails at any point during a program, then we do not want to call the success
continuation. Rather, we return the unit value which will return control back to the last function
called. Therefore, any time a function makes a call and gets control back, failure must have occurred
since a continuation was not called.

Adding this functionality to our system requires slight modifications to all of our runtime func-
tions. Success continuations (denoted sc) are passed in as a parameter and called upon success.
Instead of raising an exception, failure is now represented by returning the unit value (written ()).
These changes can been seen in the new definition of get_structure.

fun get_structure (f1, arityl, Xi) sc =
let val addr = deref(Xi)
in
cagse (addr) of
(r as (REF (ref UNBOUND))) =>
let fun for(0) = nil
| for(n) = (REF (ref UNBOUND))::(for (n-1))
val 1stl = for (arityl)
in
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(bind (r, STR (f1, arityl, lstl));
sc (lst1l, WRITE))
end
| (STR (£2, arity2, 1st2)) =>
if (£1 = £2) andalso (arityl = arity2) then
sc (1st2, READ)
else () (* Does not unify *)
I () => () (* Does not unify *)
end

Queries also change slightly to incorporate success continuations. As can be seen in the following
query code, the success continuation to print out bound query vasiables is passed in as an argument.
The query calls the program, in this case the function named foo3, with this continuation.

(* Query for $foo(h(X),W,g(W,X)) *
fun query (sc) =

let

val x2 = set_variable ()

val x1 = put_structure ("h", 1) [x2]

val x3 = set_variable ()

val x4 = put_structure ("g", 2) [x3, x2]
in

foo3 (x1, x3, x4) (fn () => sc (Top.Term.STR ("foo", 3, [x1, x3, x4]1)))
end

The way we implemented the disjunction among predicate definitions involved special control
functions, try me_else, retry me_else, and trust.me. To ensure that backtracking occurs cor-
rectly, these functions have to not only deal with the proper control flow, but they also have to
maintain each variable’s proper value. Specifically, when a clause fails and the next one is to be
tried, all of the changes made in this first attempt must be undone. This means that variables
bound in this attempt must be reset to unbound. In order to do this, we keep track of the variables
which become bound by keeping them in a list, called the trail. Each time a variable is bound it
is added to the trail. In order to undo bindings which occur during a clause we keep track of the
trail length in a variable named treg. Prior to a clause’s execution, we set the local variable old_treg
to treg, the length of the trail at that point. During a clause’s execution, bound variables may be
added to the trail, which would in turn increment treg. If at any point the clause fails, then we
unwind the trail by removing variables one at a time, resetting them to unbound, and decrementing
treg. This is done until treg equals old_treg, at which point the trail is completely restored.

The trail and and the trail’s length are defined below. They are both globally defined to be ML
references, which allows all of the runtime functions to access and modify them. Also listed here is
the function which unwinds the trail. It takes an integer, which is the number of times to remove
and initialize variables from the trail.

val trail = ref ([J:(termref ref list)) (* trail »)
val treg = ref 0 (* trail length *)
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fun unwind_trail 0 = ()
| unwind_trail diff_treg =
let fun unwind ((r1 as (ref (r2 as (BOUND hd))))::tl) =
(trail := tl;
treg := !treg -1;
rl := UNBOUND;
unwind_trail (diff_treg - 1))
| unwind [J = raise InternalError "unwind empty trail"
| unwind ((ref UNBOUND)::_) = raise InternalError "unwind unbound"
in
unwind (!trail)
end

These next three functions are the ones use to control low and between clauses in definitions.

fun try_me_else me els =
let val old_treg = !treg

in
(me ();
unwind_trail (!'treg - old_treg);
els ())

end

val retry_me_else = try_me_else

fun trust_me me = me ()

The first function try me_else takes two functions as arguments. It first sets old_treg to the
current length of the trail. Then it proceeds by calling the first function. If this first function
succeeds, a continuation will be called and control will never return to try.me_else. If control
does return, it means that the first function failed. The trail is unwound to its size prior to the
execution of the first function, and then the second function is called. If the second returns the unit

value indicating failure, try me_else will also return this value, passing on failure to the function
which called it.

The second function, retry me_else has functionality identical to try me.else, and is simply
defined as that. The only advantage to having two separate functions is it makes our code look
more like the instructions in the WAM which we followed.

The last, trust me, is like the first two functions, except it omits the “try_me” part and goes
directly to the “else”. It will be called last, and therefore takes in only one function as an argument
and then calls it. It returns the answer the functions returns.

A definition with multiple clauses uses these three functions in the following way. The first
clause is called with try me_else, which takes two arguments. The first argument is the code for
the first clause. The second argument is the code for the rest of the definition, which will be called
if the first fails. All of middle clauses are similarly called with retryme_else. The last clause
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will be called with trust_me, which only takes in the code for the last clause as its argument. The
resulting SML code will look something like this:

fun name(z,z2,...,2,) SC =
try.me._else
code for first clause
retry_me._else
code for second clause

retry_me_else

code for second to last clause
trust_me
code for last clause

Using this outline makes is easier to follow Prolog programs compiled into this more complex

SML code. Here’s an example of a three line program which is compiled into this new language,
L.

(*
* foo(Z,h(y),g(Z,h(a))).
*  foo(X,Y,Z) :- h(X),g(¥,2).
* foo(a,X,Y).
*)
fun foo3 (x1, x2, x3) sc =
try_me_else
(fn (_) => get_structure ("h", 1, x2)
(fn (x4::nil, mode) =>get_structure ("y", 0, x4)
(fn (nil, mode) =>get_structure ("g", 2, x3)
(fn (x5::x6::nil, mode) =>unify_value (x1, x5, mode)
(fn () => get_structure ("h", 1, x6)
(fn (x7::nil, mode) =>get_structure ("a", 0, x7)
(fn (nil, mode) =>sc ()))IN)N)

(fn () => retry_me_else
(fn (.) => h1 (x1)
(fn (L) => g2 (x2, x3)
(fn (1) => s¢ )

(fn (_) => trust_me
(fn (_) => get_structure ("a", 0, x1)
(fn (nil, mode) =>sc ()))))

The predicate foo is now represented by an SML function which is broken into three parts. The
first part contains the try me_else and the code for the first clause. The second part contains the
retryme._else and the code for the second clause. The last part has the trust_me and the code
corresponding to this last clause. Execution of this function will try each of clause’s codes in turn
by backtracking upon failure. '
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We will also add a disjunctive definition to our “relatives” example. By adding a second clause
to the uncle predicate, uncle now has two possibilities for success. Notice how the other two
predicates, parent and brother, remain the same since they each only contain one clause.

(=
* parent(margaret,tommy).
*  brother(bob,margaret).
*
* uncle(X,Y) :- brother(X,Z), parent(Z,Y).
* uncle(bob,cindy).
*)

fun parent2 (x1, x2) sc =
get_structure ("margaret", 0, x1)
(fn (nil, mode) =>get_structure ("tommy", 0, x2)
(fn (nil, mode) =>sc ()))

and brother2 (x1, x2) sc =
get_structure ("bob", 0, x1)
(fn (nil, mode) =>get_structure ("margaret", 0, x2)
(fn (nil, mode) =>sc ()))

and uncle2 (x1, x2) sc =
try_me_else

(fn (L) =
lot

val x3 = set_variable ()
in

brother2 (xi, x3)
(fn (_) => parent2 (x3, x2)
(fn (L) => sc )))
end)
(fn (_) => trust_me
(fn (.) => get_structure ("bob", 0, x1)
(fn (nil, mode) =>get_sfructure ("cindy", 0, x2)
(fn (nil, mode) =>sc ()))))

4. Optimizations

Satisfied with the way Core Prolog turned out, we were encouraged to further develop the system.
We decided to divide the project into two parts, which would allow two of us to work parallel. Until
this point, we had closely followed the WAM as much as possible. We felt that there were enough
differences between the systems that we should rename ours with a different name, the BLAM.!

I chose to work on optimizations made to the system, which will be explained in this section.
At the same time the optimizations were being worked on, extensions were independently being

'BLAM is an acronym for the Barbara and Luke Abstract Machine.
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added. The progress made in both parts was regularly combined into one system. The final system
includes all of the extensions as well as optimizations, although versions along the way only included
some of each. Therefore, this section will contain some references to extensions of the system not
mentioned above, but which were subsequently added. There are other side-effects encountered due
to this “co-development”. For example, one benchmark program with which the system is tested
uses arithmetic. Since this was only added after the first optimization was done, there is no data
for this benchmark for our system with no optimizations.

With this in mind, let us proceed and look at each of the optimizations in turn, and how each
of them are obtained.

4.1. Indexing

Normal execution of a predicate entails a strictly sequential search over the clauses which form its
definition. This is the optimal method of execution if the arguments of the calling predicate are
unbound. But, if some of the arguments of this calling predicate are bound, then that information
can be used to limit the search. If the type of a particular argument is either a constant or a
structure, the search path can be reduced to include only those clauses with matching argument
types. For example, if the calling predicate has three arguments, all of which are constants, then the
called predicate only needs to consider searching those clauses whose three arguments are constants
or variables.

Accommodating all of the different combinations of argument types would be quite complex
and expensive, but a suboptimal compromise turns out to be quite reasonable in practice [1]. This
compromise is done by only attempting to match the clause’s first arguments, which are referred
to as indexing keys. The following explains how to add indexing to a definition.

The sequence of clauses Cy,C3,...,C, is divided up into subsequences Sy, S2,...,5n. where
each §, is a maximal subsequence of contiguous clauses with non-variable keys. We will see how
the number of tests needed to check each clause in a subsequence will be reduced. If the key of a
clause is a variable it will unify with anything and therefore must be in a subsequence of its own.
These subsequences are then structured in such a way that each will be be tried in turn until one
of them succeeds. Let us look at an example with five clauses C; through Cs.

parent(mary, judy).
S1 ¢ parent(mary, joe).
parent{mother(joe), joe).
Sy { parent(X.,Y): —child(Y, X).
Sa { parent(joe, son(jim)).

From this it can be seen how the first three clauses, Cy through C5 are grouped together in 5.
This is the case since their keys are all non-variable. Cy must be in a subsequence by itself, due to
its key being a variable (X). Although Cs does not have a variable key, it is also by itself since it
has no neighboring non-variable clauses.

Previously, this predicate would be compiled into five SML functions, one for each clause.
These five functions would then be arranged so that all of them could be tried in turn, taking
a maximum of five tries to succeed or fail. With indexing, only three functions are created. one
for each subsequence. The first function accommodates all three of the clauses contained in the
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first subsequence. The code for the last two functions, consisting of only one clause each, remains
identical to those of L,. If the query’s key is not variable, the maximum number of tries needed to
resolve the definition is reduced to the number of subsequences the definition can be broken into.

Each subsequence with multiple clauses is compiled into an SML function which checks all of
the clauses in one test. Since the keys are either structures or constant, Two SML case statements
are used, one for each. These case statements then look up the SML code corresponding to the
clauses in the subsequence. SML’s highly optimized case statements resolve this lookup in near
constant time.

For example, when a parent query calls this program, the key of the query must first be de-
termined. If the key is variable, then all three of the clauses must be checked. If the key is a
constant, then the constant’s case statement can quickly find the corresponding function and then
call it. Likewise, a query with a structure key uses the structure’s case statement to find and call
the correct function. Determining the query’s key and is done by the following function.

fun switch_on_term (REF (ref (BOUND t)), s1, ci, f1) =
switch_on_term (t, s1, ci, f1)
| switch_on_term (STR(name,0,_):Term.term, si,ci,fl) =

cil(name)

| switch_on_term (STR(name,arity,_):Term.term,si,ci,fi) =
fi(name,arity)

| switch_on_term (REF _ :Term.term,sl,c1l,fl) =
s10)

This function, switch_on_term takes four arguments: the query’s key and three functions, s1._1,
c1, and £1. These functions represent the corresponding functions to call for variables, constants,
and structures, respectively. It determines the query’s key calls one of the three functions. If
the query is a variable, switch_on_term dereferences it by calling itself recursively until either a
constant, structure, or unbound variable is found.

Indexed SML WAM code is quite complicated, since it entails all of these changes. By looking
through an example, however, seeing how each of the components fits together becomes clearer.
The following code is produced from the five parent clauses listed above.

(*

» parent(mary, judy).

* parent(mary, joe).

* parent(mother(joe), joe).
* parent(X,Y) :- child(Y,X).
» parent(joe,son(jim)).

*)

fun parent2 (x1, x2) ctag sc =
let fun s81_1()= try_me_else (fn (_) => si_1a())
(fn (1) => 81_20))
(* code for subsequence S1 *)
and si_1a() = get_structure ("mary", 0, x1)
(fn (nil, mode) =>get_structure ("judy", 0, x2)
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(fn (nil, mode) =>sc ()))
and s1_2() = retry_me_else (fn (_) => s1_2a())
(fn (L) = s81_3())
and s1_2a() = get_structure ("mary", 0, x1)
(fn (nil, mode) =>get_structure ("joe", 0, x2)
(fn (nil, mode) =>sc ()))
and 81_3() = trust_me (fn(_) => si_3a())
and s1_3a() = get_structure ("mother", 1, x1)
(fn (x3::nil, mode) =>get_structure ("joe", 0, x3)
(fn (nil, mode) =>get_structure ("joe", 0, x2)
(fn (nil, mode) =>sc ())))
(* constant case statement *)
and ci(name) = case (name) of
"mary" => try_me_else (fn(_)=> si_1a())
(fn(_)=> trust_me (£n(_)=> s1_2a()))
I ()= 0O
(* structure case statement *)
and fi(name,arity) = case (name,arity) of
("mother", 1) => s1_3a ()
I () = 0O
(* determine which function to call based on type of x1 *)
and s1() = switch_on_term(x1,s1_1,c1,f1)
(* code for subsequence S2 *)
and s2() = (call (child2 (x2, x1))
(fn (L) => sc ()))
(* code for subsequence S3 *)
and s83() = get_structure ("joe", 0, x1)
(fn (nil, mode) =>get_structure ("son", 1, x2)
(fn (x3::nil, mode) =>get_structure ("jim", 0, x3)
(fn (nil, mode) =>sc ())))

in
try_me_else

(fn () => s81()) (* code for S1 *)

(fn (_) => retry_me_else

(fn (L) => 820)) (* code for S2 x)

(fn () => trust_me

(fn(_) => 83())) (* code for S3 *)

end

The first subsequence, S, has three functions which perform the control flow, s1.1, s1.2, and
81_3. The code for each of the three clauses are contained in three more functions, s1_1a, s1_2a,
and s1_3a. The case statement for the constant mary is in c1. Notice that since there there are two
keys in this subsequence with the same constant, c1 itself contains a try me_else and a trust_me.
The case statement for the structure mother is in £1. '

The main function for this subsequence is stored in s1. This is the function which takes the
query’s key, determines its type, and then calls the appropriate function. If the key is a variable,
then 81_1 is called. Since the variable key will unify with each clause, s1_1 must be sure to try
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subsequent clauses upon failure. A constant will call the case statement for constants, c1. This
statement checks if the constant’s name is correct. If it is, then the appropriate clause code is
called. Otherwise, the unit value is returned to indicate there is no constant in this subsequence
with that name. Finally, the query’s key may be a structure, in which case £1 is called. This last
case statement tests the query structure’s functor with the program’s. Again, a match calls the
clause code, and no matches returns failure.

The last two subsequences, 82 and 83, cannot benefit from indexing since they only contain
one clause. Again, this is the case since §; is has a variable key, and S3 has no non-variable key
neighbors. These subsequences simply contains the normal unindexed code for their clauses.

The body of the entire function parent2 consists of a try.me_else of s1(), a retry.me_else
of s2(), and finally a trust_me of 83(). These three functions call each of the three subsequence
codes in order.

4.2. Last Call Optimization

One problem with recursion is that it requires space linear in the number of recursive calls, compared
to constant space which is required by an iterative method. If the last call of a procedure is recursive,
however, it is possible to transform it into a iterative form which is logically equivalent. The WAM
refers to this as last call optimization (LCO), and explains how to implement an optimization which
can be applied systematically with or without recursion [1].

LCO is possible since permanent variables allocated to a rule are no longer needed after the last
instruction preceding the last function call made in a procedure is passed. Therefore, the current
environment can be discarded before this last call is made. It introduces special instructions which
are specifically designed to be used to do LCO.

Adding LCO to our BLAM was a much easier task. The SML compiler already has tail-call
optimization built in, which means that we did not have to explicitly implement it ourselves. In
order for SML to do this optimization, the SML function simply has to be in the tail-recursive
form, which is having the recursive call be the last call of the function. It was our job then simply
to make sure that this was the case wherever possible in our runtime system, and in the SML code
which our compiler generated.

We found that an important feature in our design was preventing our generated code to receive
this optimization. Cuts, one of the first extensions made to our core system changed the way
Prolog predicates were called in SML. Implementing cuts involved requiring functions to leave a
mark which would allow control to return to the function. We had defined the WAM runtime
function call which added an ML exception handler to the heap as it made function calls. A
second runtime function, cut, was also defined which could raise an exception and pass control
back to the function. For a Prolog program to take advantage of LCO, call must be written in a
way so that the SML compiler can recognize and optimize tail recursion. Since call is used to call
every Prolog predicate, the problem with this method is that the exception added to the runtime
stack prevents this optimization from occurring.

The way we initially defined call and cut are as follows:

fun cut ctag sc = raise ctag(sc)
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fun call prog sc =
let exception ctag of (unit -> unit)
in
prog ctag sc
handle ctag (sc’) => sc’ ()
end

Our solution to this problem involved using two special SML instructions which are not standard,
callcc and throw [5]. It can be seen in the following code that the functionality of both call and
cut remain the same, but the cut is now handled with continuations rather than exceptions. The
advantage is that there is nothing added to the runtime stack during each call, which now allows
SML to make tail-recursive optimizations when they are possible.

fun cut ctag sc = ( sc () ; throw ctag () )

fun call prog sc = callcc (fn ctag => prog ctag sc)

An example of a Prolog program which benefits from this optimization is append. One of the
clauses in this predicate calls itself recursively. In the SML code generated for this clause, shown
below, we can see that the SML function append3 is the last call made. Since it is an argument to
call, it is important that call does not add anything to the heap, and allows the SML compiler to
optimize this tail recursive function.

(=
* append(cons(X,L),K,cons(X,M)) :- append(L,K,M).
*)
fun append3 (x1, x2, x3) ctag sc =
let fun si() =
get_structure ("cons", 2, x1)
(fn (x4::x5::nil, mode) =>get_structure ("cons", 2, x3)
(fn (x6::x7::nil, mode) =>unify_value (x4, x6, mode)
(fn () => (call (append3 (x5, x2, x7))
(fn (1) => sc 0NN
in
s1()

end

4.3. Using SML Tools to Reduce Garbage Collection

Both of the previous are well known methods of improving the performance of WAM based systems.
In addition to these types of optimizations, we were also concerned with finding out if there were
bottlenecks specific to our particular SML implementation which could be improved upon. ML
offers useful tools which make this type of analysis quite easy.
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One such tool is the ML timer. System.Timer.start_timer() starts an internal clock running,
and System.Timer.check _timer returns the total running time of an ML program since the timer
was started, including how much of that time was spent garbage-collecting.

It is useful to know this information. For example, we found that one of our benchmarks,
hanoi.pl, was spending 75% of its time doing garbage collection. Once this was brought to our
attention, we concentrated on finding out what was causing this to happen.

In general, it is known that using SML references may cause a significant garbage collection
overhead. We considered that the way we implemented the trail with two references was might be
partially responsible for this. We experimented by restructuring the our trail structure in different
ways. The most efficient structure we found was to have one reference to a 2-tuple. Reducing the
number of references in this way improved our garbage collection down to 65%—an improvement
of 10%.

The following data is the information which the timer returns.

(* running time of hanoi(10) before trail optimization: gc time = 75% *)
avg non-gc time = 0.765625

avg gc time = 2.25

avg total time = 3.015625

(* running time of hanoi(10) after trail optimization: gc time = 65% *)
avg non-gc time = 0.953125

avg gc time = 1.75

avg total time = 2.703125

Another useful tool which ML has available is profiling. By compiling SML programs with in a
special profiling mode, data regarding the numbers of function calls and their execution time can
be determined. From this information, we found out that the function get_structure was a time
time consuming function. This information encouraged us to make the optimization described in
the next section. Some raw profiling data from our final system will be presented in Section 6.

4.4. String Compare Optimization

During unification, structure terms need to be compared for equality. In addition to its arguments,
a structure’s functor (consisting of name and arity) also needs to be compared. Our initial design
simply used strings to implement functor names. The problem with this is that string comparisons
can be expensive; for instance, two names which are long and similar may require many integer
(character) comparisons before it can be determined that the two strings are, in fact, different.

On the other hand, integer comparisons are resolved in a single comparison. Therefore, we
replaced each string with a corresponding unique integer. Structure names, now represented by
these integers, could now be compared in a minimum amount of time. Saving the mapping of
strings to integers allowed translation from one to the other. Translating strings into integers is
used to generate the SML code for programs and queries. Translating from integers back into
strings is necessary to print out results, in which case the user would need to see the structure
names in the string form in which they were entered.
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The two functions in our runtime system which require name comparisons are unify and
get_structure. From the following example, it can be seen how the strings get replaced by
integers in the arguments of get_structure and in the indexing case statements. This first piece
of code is the SML code generated without the optimization for a small Prolog program containing
four clauccs. Note that indexing is performed on both.

(x
* tall(jim).
* tall(joe).
* tall(brother(jim)).
* tall(sister(joe)).
*)
fun talll (x1) ctag sc =
let fun s1_1()= try_me_else
(fn (1) => si1_1a())
(fn () => s1_20))
and si_1a() = get_structure ("jim", O, x1)
(fn (nil, mode) =>sc ())
and s1_2() = retry_me_else
(Zn (L) => s1_2a())
(fn (1) => s1_30))
and s1_2a() =
get_structure ("joe", 0, x1)
(fn (nil, mode) =>sc ())
and s1_3() = retry_me_else
(fn (2) => s1_3a())
(fn (2) => s1_4())
and s1_3a() =
get_structure ("brother", 1, xi)
(fn (x2::nil, mode) =>get_structure ("jim", 0, x2)
(fn (nil, mode) =>sc ()))
and s1_4() = trust_me
(fn(_) => s1_4a())
and s1_4a() =get_structure ("sister", 1, x1)
(fn (x2::nil, mode) =>get_structure ("joe", 0, x2)
(fn (nil, mode) =>sc ()))
and ci(name) = case (name) of
“jim" => si_1a ()
I "joe" => s1_2a ()
F (L) = 0
and fi(name,arity) = case (name,arity) of
("brother", 1) => si1_3a ()
| ("sister”", 1) => si1_4a ()
I () = O
in
81() = switch_on_term(x1i,s1_1,c1,f1)
end
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This next piece of code shows the how the same program is compiled into slightly different SML
code. The only changes is that the strings have all been replaced by integers. Comments have been
added in order to more easily follow these changes.

fun talll (x1) ctag sc =
let fun s1_1()= try_me_else

(fn (0) => s1_1a())

(fn (L) => 81.2())

and si_1a() = get_structure (18, 0, x1) (* jim => 18 *)
(fn (nil, mode) =>sc ())

and s81_2() = retry_me_else
(fn () => s1_2a())
(fn (L) => s81.30))

and s1_2a() =
get_structure (19, 0, x1) (* joe => 19 ¥)
(fn (nil, mode) =>sc ())

and s1_3() = retry_me_else
(fn (.) => s1_3a())
(fn () => s81_4(0))

and s1_3a() =
get_structure (20, 1, xl) (* brother => 20 *)
(fn (x2::nil, mode) =>get_structuve (18, 0, x2) (* jim again *)

(fn (nil, mode) =>sc ()))

and s1_4() = trust_me
(£n(.) => s1_4a())

and s1_4a() =get_structure (21, 1, x1) (* sister => 21 *)
(fn (x2::nil, mode) =>get_structure (19, 0, x2) (* joe again *)

(fn (nil, mode) =>sc ()))
and cl(name) = case (name) of

18 => si_1a () (* jim *)
| 19 => s1_2a () (* joe *)
I (O = O
and fi(name,arity) = case (name,arity) of
(20, 1) => 81_3a () (* brother *)
| (21, 1) => s1_4a () (* sister *)
Q) =0
in
81() = switch_on_term(x1,s1_1,ci,f1)
end

The strings jim, joe, brother, and sister get replaced by the integers 18, 19, 20, and 21, respec-
tively. Notice how all of the strings are now gone, which allows the comparisons to take less time.
Also note how instances of the same string get replaced by the same integer, which retains the
same logic values. '
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5. Results and Analysis

We tested our system with a widely used SICStus Prolog system [4]. It is a good reference for
comparison since it is written in a low-level language and is highly optimized. The SICstus code
was interpreted byte code, also based on the WAM. We used Version 75 of the Standard ML of
New Jersey compiler. All tests were performed on a DECstation 5000/200 with 96 megabytes of
memory.

We chose benchmark programs which iruly reflect the type of code Prolog programmers write,
so we chose popular, wcil known programs. Our test suite includes five Prolog programs.

e analogy.pl: an “A is to B as C is to what?” type of puzzle

e hanoi.pl: the popular puzzle involving moving rings between poles according to a set of rules
e nrev.pl: a naive algorithm reverses the elements in a list

e slowsort.pl: brute force sort permutes all combinations of a list and checks if it is sorted

e zebra.pl: given a set of people, attributes, and rules, determine which person has which

attributes
Prolog Execution Time (ms)
Program | SICStus || BLAM | Indexed | LCO | Garbage | String
analogy.pl 52 64 36 54 39 31
hanoi.pl 172 7619 3465 | 2925 2787 | 2543
nrev.pl 20 401 320 286 273 269
slowsort.pl 7781 — 29207 | 26204 27911 | 27922
zebra.pl 697 2781 2425 | 2496 2449 | 2181

Figure 2: Benchmark suite results

These five programs, seen in the first column of Figure 2, test all of the common features of
Prolog. In particular, they involve all of the runtime functions, such as unification and backtracking.
In order to evaluate the performance of our system, we first ran each of these each of these programs
using SICStus. The execution time from these tests are seen in the second column of Figure 2. We
then ran each benchmark using each version of our system, starting with the original BLAM and
working our way up to the string compare optimization. This allows us to see the progress made
each step of the way, as seen in the third through seventh columns.

There are a couple of interesting things worth pointing out. First of all, recall that arithmetic
was not part of the original BLAM, so slowsort.pl could only be tested once it was added. Also,
notice how the Garbage Collection optimization actually produces a slightly inferior performance
for slowsort.pl. Our method of making a reference to a 2-tuple improves the other benchmarks,
but not this one. Apparently, the extra overhead in creating and destructuring tuples outweighs
the advantage of eliminating one SML reference.

In order to interpret these results better, Figure 3 shows some minor calculations performed on
the raw data. One interesting calculation is how many times slower our system is compared with
SICStus. The answer is in the second and third columns of Figure 3, containing these values for
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our original system (BLAM) and on our final system (String). They are computed by taking the
execution time of our system and dividing it by the execution time of SICStus. These figures tell
us how much slower our system was originally, and where we currently stand. The fourth column
contains a last calculation, which reveals how much each benchmark improved due to optimizations
done to the WAM. These percentages were calculated by taking our original times (BLAM) and
dividing them by our final times (String).

Prolog Times Slower Than SICStus Overall Speedup
Program | Original(BLAM) | Final(String) | of the BLAM
analogy.pl 1.2 .60 200%
hanoi.pl 44.3 14.8 300%
nrev.pl 20.1 13.45 150%
slowsort.pl 3.8 3.6 100%
zebra.pl 4.0 3.1 130%

Figure 3: Analysis of Results

This last column in Figure 3 reveals that hanoi.pl improved the most. This is due to the
significant redaction in garbage creation, which significantly reduced collection time. On average,
the the benchmarks nearly doubled in speed. This is encouraging, since there are still many of
optimizations which can be done.

The third column of numbers tells us that a couple of benchmarks ran on our final system are
still fifteen times slower SICStus. To find out where hanoi.pl and nrev.pl are spending time, we can
again look at profiling information. Figure 4 contains the first few profiling entries for hanoi.pl. The
first column of this chart tells us the most important information, the percentage of the program
tied up in one function. Other information is also included, such as the number of times a function
is called. From this figure, we can see that garbage collection still tops the list. Although this has
already been partially optimized, it still appears to be a good target for further improvement.

The first program in this chart, analogy.pl, produces the best results, but is not as accurate
of a test as the other benchmarks. It is short and there is much variation in its execution time.
However, the good results it produces means that it does do well at pattern matching, the feature
it tests the most.

The two programs which are only about three times slower than SICStus are slowsort.pl and
zehra.pl. Although garbage collection is still a main problem in these cases, other functions are

%time | cumsecs | #call | ms/call | name

43.18 14.58 0 (gc)

24.46 22.84 0 (unprofiled)
9.47 26.04 7 | 114.2857 | anon.Runtime.reset_trail
8.94 29.06 0 (toplevel)
1.89 29.70 | 162594 .0009 | anon.Runtime.get _structure.anon
1.12 30.08 | 278904 .0003 | anon.Runtime.deref
1.12 30.46 | 148524 .0006 | anon.Runtime.bind

Figure 4: Profiling information for hanoi.pl
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%time | cumsecs #call | ms/call | name

17.24 15.38 0 (ge)

10.72 24.94 | 3253842 .0007 | anon.Runtime.get_structure.anon
6.88 31.08 | 8041140 .0001 | anon.Runtime.deref
4.86 35.42 | 1764672 .0006 | anon.Runtime.unwind_trail.unwind
4.66 39.58 | 1764930 .0005 | anon.Runtime.bind
4.17 43.30 | 1194225 .0007 | anon.Runtime.try_me_else.anon
3.45 46.38 | 2093697 .0003 | anon.Runtime.get structure.anon.for
2.91 48.98 | 1402086 .0004 | anon.Runtime.call.anon.anon

Figure 5: Profiling information for slowsort.pl

also responsible for a significant portion of the running time. In both of these programs, common
runtime functions use a large portion of the time. The profiling information for slowsort.pl can be
in Figure 5.

6. Conclusions

In Section 5 we witnessed speedups in BLAM ranging from 100% to 300%. This is very encouraging.
Since each new optimization added continued to increase the system’s performance, it is likely that
many more refinements and changes could continue doing so. Even so, the current version of the
BLAM is still one to fifteen times slower than SICStus. Although this is significant, it is not
discouraging. SICStus is a highly optimized compiler which has been worked on for many years by
various researchers. In comparison, our system was developed in two years of part time work by
two relatively inexperienced undergraduates. Again, this implies that continued work will produce
better performance.

There are three specific areas which can be further improved. First of all, there are the standard
Prolog optimizations such as indexing. Many more are also known, such as Register Allocation and
Environment Trimming. Second, there are more SML optimizations, like the one we implemented
to eliminate string comparisons. Another one to try might be eliminating tag checking. Lastly,
there may be more inefficiencies unique to our implementation other than the garbage collection
we reduced. Profiling will help find such bottlenecks if any more exist.

Overall I think the results we found are quite optimistic. Although more work would be needed
to be more competitive, further refinements to our system would achieve a performance even closer
to SICStus ur other low-level implementations.
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